CHANG'S CONJECTURE FOR K.

RY

JEAN-PIERRE LEVINSKI, MENACHEM MAGIDOR^b AND SAHARON SHELAH^b

^aMathematical Department, Dartmouth College, Hanover, NH 03755, USA; and ^bInstitute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel

ABSTRACT

We establish, starting from some assumptions of the order of magnitude of a huge cardinal, the consistency of $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\omega_1, \omega_0)$, as well as of some other transfer properties of the type $(\kappa^+, \kappa) \twoheadrightarrow (\alpha^+, \alpha)$, where κ is singular.

0. Notations

- 0.1. On denotes the class of all ordinals. |X| denotes the cardinality of X.
- 0.2. If λ is a cardinal and α is an ordinal, $\lambda^{+\alpha}$ denotes the α th successor of λ .
- 0.3. If μ is a cardinal, H_{μ} is the set of all sets of hereditary cardinality $<\mu$.
- 0.4. If p is a function, dom(p) is the domain of p and Rg(p) is the range of p.
- 0.5. Let A be a structure. dom(A) is the base set of A. "X < A" means that X is an elementary substructure of A. Hull(X, A) is the Skolem Hull of X in A (with respect to a fixed well-order of dom(A)).
 - 0.6. If j is an elementary embedding, cp(j) is the critical point of j.
- 0.7. If G is generic over V and $a \in V$, a_G denotes the G-interpretation of a in V[G].

Received December 20, 1988

1. Chang's Conjectures

- 1.1. Let L be a first-order language. Let A^* , B^* be two classes of L-structures. Chang's Conjecture for (A^*, B^*) (over L) can be stated as follows: for every $A \in A^*$ there exists $B \in B^*$ such that B < A. We usually write $A^* \rightarrow B^*$.
- 1.2. Usually, we consider a two-cardinal form of Chang's Conjecture. Let κ , λ , β , α be four infinite cardinals. We write $(\kappa, \lambda) \twoheadrightarrow (\beta, \alpha)$ iff the following holds: for every countable first-order language L and for every L-structure $A = (\kappa, \lambda, \ldots)$ there exists an X < A such that $|X| = \beta$ and $|X \cap \lambda| = \alpha$.
- 1.3. REMARKS. (1) It is clear that we obtain the same conjecture if we look only at languages L such that $|L| < \omega$, or even only at languages L such that $|L| \le 2$, as soon as L contains at least a binary predicate.
- (2) We can also introduce a fifth cardinal μ and write $(\kappa, \lambda) \twoheadrightarrow_{<\mu} (\beta, \alpha)$ meaning that we have got to take care of all the languages L such that $|L| < \mu$.
- (3) We can also define the symbol $(\kappa, \lambda) \rightarrow (\beta, <\alpha)$, which means that the elementary substructure X should be such that $|X| = \beta$ and $|X \cap \lambda| < \alpha$.

One can consult [R] for more information.

- 1.4. Let us go back to the case $(\kappa, \lambda) \rightarrow (\beta, \alpha)$. Several cases are "irrelevant", in the following sense: they are either provably false or provably true (in ZFC). In order to avoid these trivial cases, we must have: $\kappa > \lambda, \beta > \alpha$, $\kappa \ge \beta, \lambda > \alpha$.
 - 1.5. For instance, we can consider conjectures like

$$(\omega_5, \omega_3)$$
 \twoheadrightarrow (ω_4, ω_2)
 (ω_3, ω_1)
 (ω_2, ω_0)
 (ω_3, ω_2) .

- 1.6. Note that a finite gap can never be increased. For example, $(\omega_5, \omega_4) \rightarrow (\omega_3, \omega_1)$ is inconsistent, because we can code the fact that "the universe is \leq to the successor of ω_4 ".
- 1.7. More Examples. (1) The usual Conjecture of Chang is $(\omega_2, \omega_1) \rightarrow (\omega_1, \omega_0)$.
 - (2) $(\kappa, \omega_1) \rightarrow (\kappa, \omega_0)$ means that κ is ω_1 -Rowbottom.

- (3) $(\forall \lambda < \kappa)[(\kappa, \lambda) \rightarrow (\kappa, \omega_0)]$ means that κ is Rowbottom.
- (4) Set $A^* = \{A/\text{dom}(A) = \kappa\}$ and

$$\mathbf{B}^* = {\mathbf{B}/\text{dom}(\mathbf{B}) \subseteq \kappa, \text{dom}(\mathbf{B}) \neq \kappa, |\text{dom}(\mathbf{B})| = \kappa}.$$

 $A^* \rightarrow B^*$ means that κ is Jonsson.

- 1.8. Consistency. (1) The consistency of $(\omega_2, \omega_1) \twoheadrightarrow (\omega_1, \omega_0)$ has been established early by Silver (unpublished), starting with an ω_1 -Erdös cardinal.
- (2) Later proofs have been given by Baumgartner (unpublished) and in [DL], without use of Martin's Axiom, and also using a Levy collapse instead of a Silver collapse.
- (3) The consistency of $(\omega_{n+2}, \omega_{n+1}) \twoheadrightarrow (\omega_{n+1}, \omega_n)$ for $n \ge 1$ has been established in [K], starting with a huge cardinal.

The consistency of other forms of Chang's Conjecture can be found in [F].

- 1.9. Converses. As to converses, the following is known.
- (1) [DJK] shows that, if $(\omega_2, \omega_1) \rightarrow (\omega_1, \omega_0)$ holds and if we set $\kappa = \omega_2$ and $\lambda = \omega_1$, then $K \models "\kappa$ is λ -Erdös" (where K denotes the Core Model).
- (2) Indeed, the proof of [DJK] shows also the following. If, for some infinite cardinals κ and λ , $(\kappa^+, \kappa) \twoheadrightarrow (\lambda^+, \lambda)$ holds, then, setting $\mu = \lambda^+, K \models$ "there exists a μ -Erdös cardinal".
- 1.10. When we look at conjectures of the form $(\kappa^+, \kappa) \rightarrow (\lambda^+, \lambda)$, we have two quite different situations, depending on whether $\lambda = \omega_0$ or $\lambda \ge \omega_1$.
- (1) We know that, if $(\kappa^+, \kappa) \rightarrow (\omega_1, \omega_0)$, then $K \models$ "there exists an ω_1 -Erdös cardinal".
- (2) Conversely, if we start with an ω_1 -Erdős cardinal, we can obtain the consistency of almost any conjecture of the form $(\kappa^+, \kappa) \rightarrow (\omega_1, \omega_0)$, as long as we accept κ to be regular (for example, κ can be ω_7 , or the first inaccessible cardinal).
- 1.11. HIGHER CARDINALS. The situation changes, if we look at (κ^+, κ) -* (λ^+, λ) , where $\lambda \ge \omega_1$.
- (1) It is proved in [DK] that, if $(\kappa^{++}, \kappa^{+}) \rightarrow (\kappa^{+}, \kappa)$ and $\kappa \ge \omega_1$, then 0^{+} ["0 dagger"] exists.
- (2) [L] derives the existence of 0[†] from other forms of Chang's Conjecture, such as the following:
 - (a) $(\kappa^+, \kappa) \rightarrow (\lambda^+, \lambda)$ and $\lambda \ge \omega_1$,
 - (b) $(\kappa^{+n}, \kappa) \rightarrow (\lambda^{+m}, \lambda)$ and $m \ge 2$,
 - (c) $(\kappa^+, \kappa) \rightarrow (\omega_1, \omega_0)$ and κ is singular.

One can also, for more on the existence of 0[†] following from some forms of Chang's Conjecture, look at [DKL].

1.12. Hence, by 1.11(2)(c), " $(\kappa^+, \kappa) \rightarrow (\omega_1, \omega_0)$ and κ is singular" is already a rather large cardinal axiom.

The rest of this paper is devoted to establishing the consistency of various hypotheses of the form $(\kappa^+, \kappa) \twoheadrightarrow (\lambda^+, \lambda)$, where κ is singular, in particular of $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\omega_1, \omega_0)$.

1.13. Before proceeding further, we may already note a fact, which puts some limits on the possibility of this kind of conjecture.

LEMMA 1. Assume that κ , ρ are infinite cardinals such that κ is singular and $\rho^{\text{cof}(\kappa)} = \rho$ (in particular, $\text{cof}(\kappa) < \rho$). Then: $(\kappa^+, \kappa) \not \to (\rho^+, \rho)$.

Proof of Lemma 1. Assume that $(\kappa^+, \kappa) \rightarrow (\rho^+, \rho)$. Set $\theta = \operatorname{cof}(\kappa)$. Hence, $\theta < \rho$. Clearly, $\kappa^\theta \ge \kappa^+$. Let $(f_i)_{i < \kappa^+}$ be a family of κ^+ different functions, $f_i \colon \theta \to \kappa$. Set $F = \bigcup_{i < \kappa^+} \{i\} \times f_i$ and $A = (\kappa^+, \theta, F)$. Assume that X < A, $|X| = \rho^+$ and $|X \cap \kappa| = \rho$. By elementarity, the family $f_i \upharpoonright_X \colon X \cap \theta \to X \cap \kappa$ is made of |X| different functions. But $|X \cap \kappa|^{|X \cap \theta|} \le \rho^\theta \le \rho$, a contradiction. QED Lemma 1.

2. Elementary submodels

2.1. Before dealing with singular cardinals, we shall recall a possible way of proving that certain forms of Chang's Conjecture are preserved in some generic extensions.

First of all, let us recall the following lemma.

LEMMA 2. Assume that κ , λ , β , α are four infinite cardinals. The following are equivalent.

- (1) $(\kappa, \lambda) \rightarrow (\beta, \alpha)$.
- (2) For at least one regular cardinal $\mu \ge \kappa$, the following holds: for every language L with $|L| \le \omega$ and every L-structure $B = (H_{\mu}, \in, L^B)$, there exists Y < B such that
 - (a) $|Y \cap \kappa| = \beta$,
 - (b) $|Y \cap \lambda| = \alpha$.
- (3) For every regular cardinal $\mu \ge \kappa$, (2) holds.

PROOF OF LEMMA 2. $(3) \rightarrow (2)$ is obvious.

(2) \rightarrow (1). Assume that L is a countable language and that $A = (\kappa, \lambda, L^A)$ is

an L-structure. Set $\mathbf{B} = (H_{\mu}, \in, \kappa, \lambda, L^{A})$ and let $Y < \mathbf{B}$ be such that $|Y \cap \kappa| = \beta$ and $|Y \cap \lambda| = \alpha$. It is clear that $Y \cap \kappa <_{L} A$.

(1) \rightarrow (3). Let μ be regular, such that $\mu \ge \kappa$. Let L be a countable language, and $\mathbf{B} = (H_{\mu}, \in, L^{\mathbf{B}}, \triangleleft)$ be a structure, where \triangleleft is a well-order on H_{μ} . Let $(f_n)_{n < \omega}$, $f_n : [H_{\mu}]^n \to H_{\mu}$, be a complete set of Skolem functions for \mathbf{B} and define, for $n < \omega$, a function $g_n : [\kappa]^n \to \kappa$, setting, for $a \in [\kappa]^n$,

$$g_n(a) = \begin{cases} f_n(a) & \text{if } f_n(a) \in \lambda, \\ 0 & \text{if not.} \end{cases}$$

Finally, set $A = (\kappa, \lambda, (g_n)_{n < \omega})$. Let, by (1), X be such that X < A, $|X| = \beta$ and $|X \cap \lambda| = \alpha$. Set Y = Hull(X, B). It is clear that $|Y| = |Y \cap \kappa| = |X| = \beta$. On the other hand, due to the g_n 's, we have $|Y \cap \lambda| = \alpha$. QED Lemma 2.

2.2. Let us now, as a sample, recall the following.

THEOREM 3. Assume that $(\kappa, \alpha^+) \rightarrow (\alpha^+, \alpha)$. Let P be a set of conditions, such that P satisfies the α^+ -antichain condition. Then:

$$V^P \models (\kappa, \alpha^+) \twoheadrightarrow (\alpha^+, |\alpha|).$$

PROOF OF THEOREM 3. Let μ be a regular cardinal, large enough so that $\mathscr{P}(P) \subseteq H_{\mu}$. Let G be P-generic over V. Since $\mathscr{P}(P) \subseteq H_{\mu}$, $(H_{\mu})^{V[G]} = H_{\mu}[G]$. Let, in V[G], $\bar{\mathbf{B}} = (H_{\mu}[G], \in, \bar{B})$ be a structure. Take $B \in V$, such that $B \subseteq H_{\mu}$ and $\bar{B} = (B)_G$. Set $\mathbf{B} = (H_{\mu}, \in, B, \{\alpha\}, \triangleleft)$, where \triangleleft is a well-order of H_{μ} . Hence, $\bar{\mathbf{B}}$ is a reduct of B[G].

CLAIM 1. There exists, in V, an M < B such that $|M \cap \kappa| = \alpha^+$, $|M \cap \alpha^+| = \alpha$, $\alpha \in M$ and $M \cap \alpha^+$ is transitive.

PROOF OF CLAIM 1. Let us work for a moment in V. Let X < B be such that $|X| = \alpha^+$ and $|X \cap \alpha^+| = \alpha$. Set $\xi_0 = \sup(X \cap \alpha^+)$. Clearly, $\xi_0 < \alpha^+$. Hence, $\alpha < \xi_0 < \alpha^+$. Set $M = \operatorname{Hull}(X \cup \xi_0, B)$. It is clear that $|M| = \alpha^+$. Hence, it is enough to show that $M \cap \alpha^+ = \xi_0$. To see this, let $t(v_1, \ldots, v_n, w)$ be a term, and let $\delta_1, \ldots, \delta_n < \xi_0$ and $a \in X$ be such that $\zeta = t(\delta_1, \ldots, \delta_n, a) \in \alpha^+$. We have got to show that $\zeta < \xi_0$. Take $\eta \in X \cap \xi_0$ such that $\delta_1, \ldots, \delta_n < \eta$, and set $s(\eta, a) = \{t(\gamma_1, \ldots, \gamma_n, a)/\gamma_1, \ldots, \gamma_n < \eta\}$. Clearly, $s(\eta, a) \in X$, and $t(\delta, a) \in s(\eta, a) \cap \alpha^+$. Hence, setting $\gamma = \sup[s(\eta, a) \cap \alpha^+]$ we see, since $\alpha^+ \in X$, that $t(\delta, a) \le \gamma < \xi_0$.

QED Claim 1.

Let M be as in Claim 1. Let $h: N \to M$ be the transitive collapse of M. Set $P' = (h^{-1})(P)$ and $H = (h^{-1})''(G)$.

CLAIM 2. H is P'-generic over N.

PROOF OF CLAIM 2. Let D be a maximal antichain in P', such that D is first-order definable in N. By elementarity, $D \in N$ [since B satisfies that every definable subset of P is a set]. By elementarity again, $N \models "|D| \le \alpha$ ", since P satisfies the α ⁺-antichain condition in V. But $h \upharpoonright_{\alpha+1} = \operatorname{Id}$, and hence h''(D) = h(D). Hence, h''(D) is a maximal antichain in P, and we are done.

QED Claim 2.

Since H is P'-generic over N, N[H] satisfies the Truth Lemma. Since $h''(H) \subseteq G$, h has an extension to a map $h^*: N[H] \to B[G]$, given by $h^*(a_H) = (h(a))_G$. Set $\bar{M} = \text{Rg}(h^*)$. Hence, $\bar{M} < \bar{B}[G]$, and it is clear that $|\bar{M}| = \alpha^+$. On the other hand, N[H] has the same ordinals as N. Hence, $On \cap \bar{M} = (h^*)''(On \cap N[H]) = h''(On \cap N) = On \cap M$. So, $\bar{M} \cap \alpha^+ = M \cap \alpha^+$, and $|\bar{M} \cap \alpha^+| \le \alpha$. QED Theorem 3.

2.3. We will have to deal with situations where, keeping the notations of the proof of Theorem 3, H cannot be P'-generic over N. Hence, h will not extend to an elementary embedding from N[H] into B[G]. Hence, we have got to refine slightly the argument.

Keeping the notations of the proof of Theorem 3, we see that, due to the definition of h^* , $\bar{M} = \{a_G/a \in M\}$. We will keep this definition of \bar{M} . However, it will be false that $\bar{M} \cap \mathrm{On} = M \cap \mathrm{On}$ [actually, " $\bar{M} \cap \mathrm{On} = M \cap \mathrm{On}$ " is equivalent to "H is P'-generic over N", as shown in [S]]. Hence, we will have to ensure that, although $\bar{M} \cap \alpha^+$ is larger that $M \cap \alpha^+$, we do not add too many ordinals.

2.4. Hence, assume that μ is a regular cardinal, and that $\mathbf{B} = (H_{\mu}, \in, \ldots)$ is a structure, where "..." denote some additional predicates, including a well-order of H_{μ} . Let P be a set of conditions, such that $\mathcal{P}(P) \subseteq H_{\mu}$. Let M be an elementary substructure of \mathbf{B} . Let G be P-generic over V. Set $M[G] = \{a_G/a \in M\}$.

LEMMA 4. $M[G] \prec B[G]$.

PROOF OF LEMMA 4. Let us first observe that the forcing relation over P restricted to B is definable in B, since $\mathcal{P}(P) \subseteq H_{\mu}$. [This point is, however, not essential in the proof, since we could always add it to B as a predicate.]

To show that M[G] < B[G], let us take a formula $\varphi(v_1, \ldots, v_n)$ and terms $a_1, \ldots, a_n \in M$ and show that $M[G] \models \varphi((a_1)_G, \ldots, (a_n)_G)$ iff $B[G] \models \varphi((a_1)_G, \ldots, (a_n)_G)$. We proceed as usual, by induction on φ , so

that we can assume that φ is of the form $(\exists x)\theta$, and that it is true in B[G]. Let $p_0 \in G$ be such that $p_0 \models_P \varphi(a_1, \ldots, a_n)$. Since $B \models ZFC^-$ and since $\mathscr{P}(P) \subseteq H_\mu$, the maximum principle is valid in B. Hence, we can find a term $b \in H_\mu$ such that

$$\mathbf{B} \models (\forall q)[q \Vdash_{P} \varphi(a_1, \ldots, a_n) \rightarrow q \Vdash_{P} \theta(b, a_1, \ldots, a_n)].$$

By elementarity, such a term b must exists in M. By induction hypothesis, $M[G] \models \theta(b_G, (a_1)_G, \ldots, (a_n)_G)$. QED Lemma 4.

- 2.5. REMARK. We could define M[G] in another (equivalent) way. Let $h: N \rightarrow M$ be the transitive collapse of M. Let B denote the boolean completion
- of P. Assume that G is B-generic over V, and set $B' = h^{-1}(B)$ and $H = (h^{-1})''(G)$. Hence, H is an ultrafilter over the N-complete boolean algebra B'. Hence, we can define the boolean model $N^{B'}/H$. It is immediate that h extends to an elementary embedding from $N^{B'}/H$ into B, and that the image of this elementary embedding is precisely M[G].

3. Consistency results

3.1. We shall begin with the following theorem.

THEOREM 5. Assume that GCH holds. Assume that there exists an elementary embedding $j: V \rightarrow N$ such that:

- (1) N is transitive and $j \neq Id$.
- (2) If we set $\kappa = \operatorname{cp}(j)$ and $\lambda = j(\kappa)$, then $N^{\lambda^{+\omega+1}} \subseteq N$. Then there exists a generic extension of V in which $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\omega_1, \omega_0)$ holds.

Proof of Theorem 5.

CLAIM 1. In
$$V$$
, $(\lambda^{+\omega+1}, \lambda^{+\omega}) \rightarrow (\kappa^{+\omega+1}, \kappa^{+\omega})$.

PROOF OF CLAIM 1. Let L be a countable language and $A = (\lambda^{+\omega+1}, \lambda^{+\omega}, L^A)$ be a structure. Set $\pi = j \upharpoonright_A$. π is an elementary embedding from A into j(A). Since $N^{\lambda^{+\omega+1}} \subseteq N$, $Rg(\pi) = M \in N$ and M < j(A). It is clear that $|M| = \lambda^{+\omega+1} = j(\kappa^{+\omega+1})$ and that $M \cap j(\lambda^{+\omega}) = j''(\lambda^{+\omega})$, hence that $|M \cap j(\lambda^{+\omega})| = j(\kappa^{+\omega})$. Hence, $N \models "j(A)$ admits an elementary submodel of type $(j(\kappa^{+\omega+1}), j(\kappa^{+\omega}))$ ". By elementarity, A admits an elementary submodel M' of type $(\kappa^{+\omega+1}, \kappa^{+\omega})$. QED Claim 1.

REMARKS. (1) Since $M \cap \lambda = \kappa$ is transitive, we could also assume that $M' \cap \kappa \in \kappa$.

(2) Since $\pi \upharpoonright_{\kappa} = \text{Id} \upharpoonright_{\kappa}$, Claim 1 would still be true over languages of arbitrary cardinality $< \kappa$.

We can now forget about the elementary embedding j and use only the fact that, in V, $(\lambda^{+\omega+1}, \lambda^{+\omega})$ — $(\kappa^{+\omega+1}, \kappa^{+\omega})$, and some cardinality properties, following from the GCH.

Let P_0 be the set of all finite partial functions $p:\omega\to\kappa^{+\omega}$, ordered by reverse inclusion. Hence, $|P_0|=\kappa^{+\omega}$, and hence in V^{P_0} , $\kappa^{+\omega+1}=\omega_1$. In V^{P_0} , let P_1 be the Levy set making $\lambda=\omega_2$ with countable conditions. Set $P=P_0*P_1$. It is clear that $|P|=\lambda$, that P has the λ -antichain condition and that, in V^P , $\kappa^{+\omega+1}=\omega_1$, $\lambda=\omega_2$, $\lambda^{+\omega}=\aleph_{\omega}$ and $\lambda^{+\omega+1}=\aleph_{\omega+1}$. We claim that, in V^P , $(\aleph_{\omega+1},\aleph_{\omega})$ - (ω_1,ω_0) holds.

To see that, set $\mu = \lambda^{+\omega+1}$, and let G be P-generic over V. Since $\mathscr{P}(P) \subseteq H_{\mu}$, we see that $(H_{\mu})^{V[G]} = H_{\mu}[G]$. Let $\bar{B} \in V[G]$ be such that $\bar{B} \subseteq H_{\mu}[G]$ and set $\bar{B} = (H_{\mu}[G], \in, \bar{B})$. Let $B \in V$ be such that $B \subseteq H_{\mu}$ and $\bar{B} = (B)_G$. Finally, set $B = (H_{\mu}, \in, B, \{P\}, \triangleleft)$, where \triangleleft is a well-order of H_{μ} . Let $M \in V$ be such that $M \triangleleft B$, $|M \cap \lambda^{+\omega+1}| = \kappa^{+\omega+1}$ and $|M \cap \lambda^{+\omega}| = \kappa^{+\omega}$. Set $\bar{M} = M[G]$. By Lemma $A, \bar{M} \triangleleft B[G]$. It is clear that $|\bar{M}| = \kappa^{+\omega+1} = (\omega_1)^{V[G]}$. Hence, it is enough to show that

Claim 2. $V[G] \models "|\bar{M} \cap \lambda^{+\omega}| \leq \omega_0"$.

PROOF OF CLAIM 2. Let δ be an ordinal. Say that a is a δ -term if $a \in H_{\mu}$ and \Vdash_P " $a \in \delta$ ". Let $T(\delta)$ denote the set of all δ -terms. It is clear that $\bar{M} \cap \lambda^{+\omega} = \{a_G/a \in T(\lambda^{+\omega}) \cap M\}$. Moreover, since $\lambda^{+\omega} = \bigcup \{\lambda^{+n}/n < \omega\}$, and since $(\forall n < \omega)[\lambda^{+n} \in M]$ (because $\omega + 1 \subseteq M$) and $\lambda^{+\omega} \in M$, we see that $\bar{M} \cap \lambda^{+\omega}$ is still equal to $\{a_G/\text{for some } \delta \in M \cap \lambda^{+\omega}, a \in T(\delta) \cap M\}$. Hence, in order to show that $|\bar{M} \cap \lambda^{+\omega}| \leq \omega$, it is enough to show that, for all $\delta \in M \cap \lambda^{+\omega}$, $V[G] \models |T(\delta) \cap M| \leq \omega$. Hence, take $\delta \in M \cap \lambda^{+\omega}$. An element $a \in T(\delta)$ can be obtained as follows. Let B denote the boolean completion of P. Define a function $f : \delta \to B$ setting, for $\alpha < \delta$, $f(\alpha) = ||a = \alpha||^B$. It is clear that a_G is the unique $\alpha < \delta$ such that $f(\alpha) \in G$. Since P has the λ -antichain condition and $|P| = \lambda$, we see that $|B| = \lambda$ and that $B \in H_{\mu}$. Hence, $T(\delta) \in H_{\mu}$ and, moreover, $|T(\delta)| = \lambda^{\delta} < \lambda^{+\omega}$, since we assume that the GCH holds $(\lambda^{+\omega}) \in H_{\mu}$ strong limit would be enough for this point). Since $B \models H_{\mu} \cap H_{\mu$

QED Theorem 5.

3.2. We can improve Theorem 5 as follows.

THEOREM 6. Assume that the GCH holds. Assume that $1 \le n < \omega$ and that there exists an elementary embedding $j: V \to N$ such that:

- (1) N is transitive and $j \neq Id$.
- (2) Setting $\kappa = \operatorname{cp}(j)$ and $\lambda = j(\kappa)$, $N^{\lambda + \omega_n + 1} \subseteq N$.

Then there exists a generic extension of V in which $(\aleph_{\omega_n+1}, \aleph_{\omega_n}) \twoheadrightarrow (\omega_{n+1}, \omega_n)$ holds.

PROOF OF THEOREM 6. We follow the proof of Theorem 5. As first claim, we obtain the fact that $(\lambda^{+\omega_n+1}, \lambda^{+\omega_n}) \rightarrow (\kappa^{+\omega_n+1}, \kappa^{+\omega_n})$ holds in V. Moreover, by Remark (2) following the proof of Claim 1, this hypothesis holds over all languages L such that $|L| < \kappa$. In particular, this implies that we can always assume that our elementary substructure M is such that $\omega_n + 1 \subseteq M$.

Now, let P_0 be the set of all partial functions $p: \omega_n \to \kappa^{+\omega_n}$ such that $|P| < \omega_n$, ordered by reverse inclusion. The supplementary point here is that, because of the GCH, $|P_0| = \kappa^{+\omega_n}$. Hence, forcing with P_0 preserves all the cardinals γ such that $\gamma \le \omega_n$ or $\gamma > \kappa^{+\omega_n}$, and makes $\kappa^{+\omega_n+1} = \omega_{n+1}$.

We let, in V^{P_0} , P_1 be the Levy collapse making λ the successor of $\kappa^{+\omega_n+1}$ and set $P=P_0*P_1$. Hence $|P|=\lambda$, P has the λ -antichain condition and, in V^P , $\kappa^{+\omega_n+1}=\omega_{n+1}$, $\lambda=\omega_{n+2}$, $\lambda^{+\omega_n}=\aleph_{\omega_n}$ and $\lambda^{+\omega_n+1}=\aleph_{\omega_n+1}$.

Let us keep the notations of the proof of Theorem 5. Since $\omega_n + 1 \subseteq M$, $\{\lambda^{+i}/i < \omega_n\} \subseteq M$. Hence, $\bar{M} \cap \lambda^{+\omega_n} = \{a_G/\text{for some } \delta \in M \cap \lambda^{+\omega_n}, a \in T(\delta) \cap M\}$. Hence, it is enough to show that, for $\delta \in M \cap \lambda^{+\omega_n}$, $|T(\delta) \cap M| \le \kappa^{+\omega_n}$. This is proven exactly as in Theorem 5. QED Theorem 6.

3.3. REMARKS. (1) Of course, the scheme of proof of Theorem 6 applies to a variety of situations, as soon as the right cardinals are preserved.

We did not use fully the full fact that $|P| = \lambda$ and P satisfies the λ -antichain condition. $|P| < \lambda^{+\omega}$ [resp. $|P| < \lambda^{+\omega_n}$] would have been enough.

- (2) In general, we could also have argued as follows. Assume the GCH. Let ρ , κ be two regular cardinals, such that $\omega \leq \rho < \kappa$. Assume the existence of an elementary embedding $j: V \to N$ such that N is transitive, $j \neq Id$, and, if we set $\kappa = \operatorname{cp}(j)$ and $\lambda = j(\kappa)$, then $N^{\lambda^{+\rho+1}} \subseteq N$. Then, in some generic extension of V, $(\aleph_{\rho+1}, \aleph_{\rho}) \twoheadrightarrow (\rho^+, \rho)$ holds.
- (3) As we have seen in Lemma 1, $(\aleph_{\rho+1}, \aleph_{\rho}) \twoheadrightarrow (\rho^{++}, \rho^{+})$ will, in general, not be consistent.
 - (4) What about $(\aleph_{\rho+1}, \aleph_{\rho}) \twoheadrightarrow (\delta^+, \delta)$, with $\delta^+ \leq \rho$? More specifically, what about

- (a) $(\aleph_{\omega_1+1}, \aleph_{\omega_1}) \twoheadrightarrow (\omega_1, \omega_0)$,
- (b) $(\aleph_{\omega_1+1}, \aleph_{\omega_2}) \twoheadrightarrow (\omega_2, \omega_1)$,
- (c) $(\aleph_{\omega_1+1}, \aleph_{\omega_2}) \twoheadrightarrow (\omega_1, \omega_0)$?

A glance at the proof of Theorem 6 shows that the construction does not work in this case. For, assume that $0 \le k < n < \omega$, that κ , λ are two regular cardinals such that $\omega_n < \kappa < \lambda$ and that $(\lambda^{+\omega_n+1}, \lambda^{+\omega_n}) \twoheadrightarrow (\kappa^{+\omega_n+1}, \kappa^{+\omega_n})$ holds. Assume also that a set of conditions P has been found, such that we can establish that $(\aleph_{\omega_n+1}, \aleph_{\omega_n}) \twoheadrightarrow (\omega_{k+1}, \omega_k)$ holds in V^P , using the above hypothesis in V, and the method of proof of Theorem 6. Let G be P-generic over V. In V[G], the following has to hold:

- (a) $|\kappa^{+\omega_n}| = \omega_k$,
- (b) $\lambda^{+\omega_n} = \aleph_{\omega_n}$.

Since $\omega_k < \omega_n \le \kappa^{+\omega_n}$, (a) implies that ω_n is not a cardinal in V[G], contradicting (b).

Hence, we have got to do a slight change in the proof of Theorem 6.

THEOREM 7. Assume that the GCH holds. Assume that k, n are two integers, such that 0 < k + 1 < n. Assume that there exists an elementary embedding $j: V \rightarrow N$ such that:

- (a) N is transitive and $j \neq Id$.
- (b) If we set $\kappa = \operatorname{cp}(j)$ and $\lambda = j(\kappa)$, then $N^{\lambda^{+\lambda+1}} \subseteq N$.

Then there exists a generic extension of V in which $(\aleph_{\omega_n+1}, \aleph_{\omega_n}) \twoheadrightarrow (\omega_{k+1}, \omega_k)$ holds.

PROOF OF THEOREM 7. As in Claim 1 of the proof of Theorem 5, we see that the relation $(\lambda^{+\lambda+1}, \lambda^{+\lambda}) \rightarrow (\kappa^{+\kappa+1}, \kappa^{+\kappa})$ holds in V. Hence, we shall derive the result from this hypothesis, together with some cardinal assumptions.

Let P_0 be the set of all partial functions $p: \omega_k \to \kappa^{+\kappa}$, such that $|p| < \omega_k$. Using GCH, we see that $|P_0| = \kappa^{+\kappa}$. Hence, forcing with P_0 preserves all cardinals γ such that $\gamma \le \omega_k$ or $\gamma \ge \kappa^{+\kappa+1}$. Moreover, $\|-P_0 \omega_{k+1} = \kappa^{+\kappa+1}$.

In V_{P_0} , let P_1 be the Levy set of conditions making $\lambda = \omega_n$. Forcing with P_1 over V^{P_0} does not destroy $\kappa^{+\kappa+1}$, precisely because k+1 < n. Set $P = P_0 * P_1$. Hence $|P| = \lambda$, P has the λ -antichain condition and in V^P , $\kappa^{+\kappa+1} = \omega_{k+1}$, $\lambda = \omega_n$, $\lambda^{+\lambda} = \aleph_{\omega_n}$ and $\lambda^{+\lambda+1} = \aleph_{\omega_n+1}$. As usual, set $\mu = \lambda^{+\lambda+1}$ and let $B \subseteq H_{\mu}$. Set $\mathbf{B} = (H_{\mu}, \in B, \{P\}, \triangleleft)$, where \triangleleft is a well-order of H_{μ} . Let G be P-generic over V, and set $\bar{\mathbf{B}} = \mathbf{B}[G]$. We have got to find some $\bar{M} \in V[G]$ such that $\bar{M} < \bar{\mathbf{B}}$, $|\bar{M}| = \omega_{k+1}$ and $|\bar{M} \cap \lambda^{+\lambda}| = \omega_k$. As before, we take a set $M \in V$

such that M < B, $|M| = \kappa^{+\kappa+1}$ and $|M \cap \lambda^{+\lambda}| = \kappa^{+\kappa}$, and we set $\bar{M} = M[G]$. It is clear that $|\bar{M}| = \kappa^{+\kappa+1} = \omega_{k+1}$. Hence, we have got to show that, in V[G], $|\bar{M} \cap \lambda^{+\lambda}| \leq \omega_k$.

To show this, we shall anew "count the $\lambda^{+\lambda}$ -terms".

Assume that $\xi \in \bar{M} \cap \lambda^{+\lambda}$. Let $a \in M$ be such that $\xi = a_G$. Applying the maximum principle in H_{μ} , we see that there exists a term $b \in H_{\mu}$ such that

- (1) $\Vdash_P b < \lambda^{+\lambda}$,
- (2) $\parallel_P a < \lambda^{+\lambda} \rightarrow a = b$.

[In particular, for any such b, $b_G = a_G = \xi$.]

By elementarity, such a b must exist in M. This means that we can, without loss of generality, assume that

(a) $\parallel_P a < \lambda^{+\lambda}$.

Now, we shall use the fact that P satisfies the λ -antichain condition. This implies that

(b) $\mathbf{B} \models$ "for some $\delta < \lambda^{+\lambda}$, $\parallel_{P} a < \delta$ ".

By elementarity, there exists some $\delta \in M \cap \lambda^{+\lambda}$ such that $\parallel_{P} a < \delta$, which means that $a \in T(\delta)$ [the set of all δ -terms]. Hence, we have shown that

- (c) $\bar{M} \cap \lambda^{+\lambda} = \{a_G/\text{for some } \delta \in M \cap \lambda^{+\lambda}, a \in T(\delta) \cap M\}.$ This implies that $|\bar{M} \cap \lambda^{+\lambda}| \leq |M \cap \lambda^{+\lambda}| \cdot \sup\{|T(\delta)|/\delta \in M \cap \lambda^{+\lambda}\}.$ Hence, let us verify that, in V[G], this cardinal is at most ω_k .
 - (i) $V[G] \models |M \cap \lambda^{+\lambda}| = |\kappa^{+\kappa}| = \omega_k$.
- (ii) Assume that $\delta \in M \cap \lambda^{+\lambda}$, and let us show that $V[G] \models |T(\delta)| \leq \omega_k$. Let B denote the boolean completion of P. Since $|P| = \lambda$ and P satisfies the λ -antichain condition, we see that $|B| = \lambda$. Hence, as in the proof of Theorem 5, we see that $|B| = |T(\delta)| \leq |B^{\delta}| = \lambda^{\delta} < \lambda^{+\lambda}$, since $\delta < \lambda^{+\lambda}$ and the GCH holds in V. Hence $M \models |T(\delta)| \leq \lambda^{+\lambda}$, and so $V[G] \models |T(\delta) \cap M| \leq |\kappa^{+\kappa}| \leq \omega_k$. QED Theorem 7.
- 3.4. REMARKS. Hence, we have solved the cases $(\aleph_{\omega_n+1}, \aleph_{\omega_n}) \twoheadrightarrow (\omega_{k+1}, \omega_k)$, except one: $(\aleph_{\omega_n+1}, \aleph_{\omega_n}) \twoheadrightarrow (\omega_n, \omega_{n-1})$, with $n \ge 1$. We shall leave this case open.

REFERENCES

[DJK] H.-D. Donder, R. Jensen and B. Koppelberg, Some applications of the core model, in Set Theory and Model Theory, Lecture Notes in Math. No. 872, Springer-Verlag, Berlin, 1981, pp. 55-97.

[DK] H.-D. Donder and P. Koepke. On the consistency strength of "accessible" Jonsson cardinals and of the weak Chang Conjecture, Ann. Pure Appl. Logic 25 (1983), 233-261.

[DKL] H.-D. Donder, P. Koepke and J.-P. Levinski, Some stationary subsets of $\mathcal{P}(\lambda)$, Proc. Am. Math. Soc. 102 (1988), 1000–1004.

- [DL] H.-D. Donder and J.-P. Levinski, Some principles related to Chang's Conjecture, Ann. Pure Appl. Logic, to appear.
- [F] M. Foreman, Large cardinals and strong model-theoretic transfer properties, Trans. Am. Math. Soc. 272 (1982), 427-463.
 - [K] K. Kunen, Saturated ideals, J. Symb. Logic 43 (1978), 65-76.
 - [L] J.-P. Levinski, Instances of the Conjecture of Chang, Isr. J. Math. 48 (1984), 225-243.
- [R] F. Rowbottom, Some strong axioms of infinity incompatible with the axiom of constructibility, Ann. Math. Logic 3 (1971), 1-44.
 - [S] S. Shelah, Proper Forcing, Lecture Notes in Math. No. 940, Springer-Verlag, Berlin, 1982.